Through-Focal HAADF-STEM Analysis of Dislocation Cores in a High-Entropy Alloy
نویسندگان
چکیده
High-entropy alloys (HEAs) are a new class of multi-component alloys that exhibit surprising characteristics, [1] including very large strain hardening rates, large fracture toughness at room temperature [2], and a strong temperature dependence of yield strength at or below room temperature. These properties are closely linked to nano-twinning and dislocation-mediated plasticity, yet little experimental work has explored dislocation dissociation, stacking fault energy, or core structures in these alloys [3]. In this study, an HEA, containing 5 elements (Cr, Co, Mn, Fe, and Ni) with equiatomic composition was deformed to a 5% plastic strain at room temperature [4]. Post-mortem 3mm disks were electro-polished using a solution consisting of 21% Perchloric acid and 79% Acetic acid and analyzed using a probe-corrected Titan 80-300kV along a [110] zone axis. Highly planar deformation was first observed by Otto et al. [5] and was active for this study as well. This planar deformation, involving dislocation arrays on {111} slip systems, may imply the existence of short-range order, low stacking fault energy (SFE), and/or supplementary displacements in the wake of dislocations.
منابع مشابه
Homogeneity and composition of AlInGaN: A multiprobe nanostructure study.
The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging f...
متن کاملHAADF-STEM and Super-XTM XEDS Tomography of Complex Nano-scale Precipitates in a High Entropy Alloy, AlMo0.5NbTa0.5TiZr
High entropy alloys (HEAs) are a relatively new class of materials garnering a great deal of attention due to their remarkable balance of properties, including high strength, toughness, ductility, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on 4 or more principal elements with near equimolar concentrations and tend to have simple microstructures due to th...
متن کاملSinter-free phase conversion and scanning transmission electron microscopy of FePt nanoparticle monolayers.
Thermally robust monolayers of 4-6 nm diameter FePt nanoparticles (NPs) were fabricated by combining chemical synthesis and atomic layer deposition. Spin-cast monolayers of FePt NPs were coated with thin, 11 nm-thick layers of amorphous Al(2)O(3), followed by annealing to convert the FePt NPs from an alloy (A1) into intermetallic FePt (L1(0)) and FePt(3) (L1(2)) phases. The Al(2)O(3) layer serv...
متن کاملMetallurgical and mechanical properties of laser cladded AlFeCuCrCoNi-WC10 high entropy alloy coating
In spite of excellent corrosion resistance, good ductility and low cost of AISI 316 austenitic stainless steel, the low hardness and poor mechanical charecteristic of material restricts its applicability in several industrial services. To improve upon mechanical properties AlFeCuCrCoNi-WC10 high-entropy alloy coatings were deposited via laser cladding on austentic stainless steel AISI 316 subst...
متن کاملDislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy
High-entropy alloys are multicomponent metallic materials currently attracting high research interest. They display a unique combination of chemical disorder and crystalline long-range order, and due to their attractive properties are promising candidates for technological application. Many high-entropy alloys possess surprisingly high strength, occasionally in combination with high ductility a...
متن کامل